TSVM-D4 系列 EtherCAT 总线 伺服使用说明书 (AC220V)

V1.0

适用软件版本: MCU 程序 版本号: 1.00.05 及以上

FPGA 程序 版本号: 1.00.15 及以上

发布日期: 2022年10月

目 录

1 规格与尺寸
1.1 配线图1
1.2 产品简介1
1.3 命名规则2
1.4 技术规格2
1.5 外观尺寸4
2 定义与配线5
2.1 电源接口定义5
2.3 电机动力线接口定义5
2.3 编码器接口定义6
2.4 IO 输入信号 X1 接口定义7
2.5 IO 输出信号 X2 接口定义8
2.6 抱闸信号 X3 接口定义9
2.7 USB 调试口 X4 定义10
2.8 EtherCAT 通信口定义10
3 上位机软件使用说明11
3.1 STP 上位机软件介绍11
3.2 连接功能11
3.3 轴通道列表12
3.3.1 电机
3.3.2 限幅13
3.3.3 电流环
3.3.4 速度环14
3.3.5 位置环14
3.3.6 参数15
3.3.7 示波器
3.3.8 报警18
4 通讯功能
4.1 EtherCAT 通信基础19
4.2.1 Ether CAT 通信19
4.2.2 Ether CAT 状态机19
4.2.3 通信同期模式20
4.2.4 邮箱数据 SD020
4.2.5 过程数据 PD020
4.2.6 分布时钟21

	4.	3驱动模式	22
		4.3.1 伺服状态机	. 22
		4.3.2 控制字 6040h、6840h、7040h、7840h	. 24
		4.3.2 状态字 6041h、6841h、7041h、7841h	. 25
	4.	4 控制模式	26
		4.4.1 伺服模式介绍	. 26
		4.4.2 伺服模式切换	. 28
		4.4.3 常用对象说明	. 30
5	参数	数一览表	
	5.	1分配一览表	31
	5.	2 Fn 参数一览表	33
6	故『	章报警	. 34
	6.	1 公共报警	34
		6.1.1 常见报警处理方法	
	6.	2 单轴报警	37
		6.2.1 常见报警处理方法	
7	电机	凡适配表	. 48

1规格与尺寸

1.1 产品简介

TSVM-D4 系列全数字交流伺服驱动器为四合一伺服驱动器,具有以下特点:

- 低压伺服,工作在单相 220VAC 交流电压下,适配低压电机;
- 可以适配多摩川、松下绝对式编码器,可以适配磁电编码器:
- 兼容 EtherCAT 工业现场总线接口;
- 高同步,4轴同步时间到达纳秒;
- 高响应,速度环频率响应超 1.5KHz,电流环更新时间 5us:
- 易调试,支持负载惯量识别和刚性等级设置;
- 高性能,支持负载扰动观测及补偿,支持摩擦力、重力轴、母线电压补偿及振动抑制。

1.2 配线图

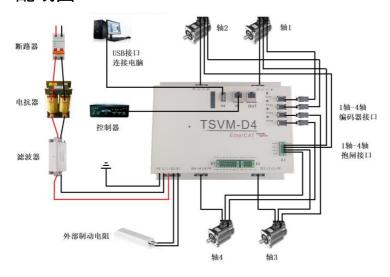


图 1-1 TSVM-D4 系列交流伺服驱动器配线图

1.3 命名规则

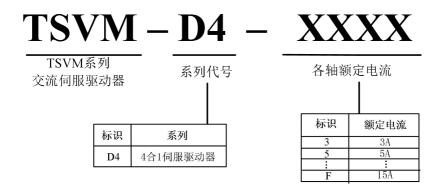


图 1-2 TSVM-D4 系列交流伺服驱动器命名规则

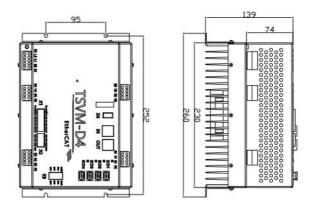

1.4 技术规格

表 1-1 TSVM-D4 系列交流伺服驱动器技术规格

型号	4 轴功率分配				
TSVM-D4-3333	M1	M2	М3	M4	
13VM-D4-3333	400W	400W	400W	400W	
额定电流 (rmsA)	3.0	3.0	3.0	3.0	
最大电流 (rmsA)	9.0	9.0	9.0	9.0	
峰值电流(o-pA)	12.7	12.7	12.7	12.7	
TSVM-D4-5522	M1	M2	М3	M4	
13VM-D4-3322	750W	750W	200W	200W	
额定电流 (rmsA)	5.0	5.0	2.0	2.0	
最大电流 (rmsA)	15.0	15.0	6.0	6.0	
峰值电流(o-pA)	21.2	21.2	8.5	8.5	
TSVM-D4-5553	M1	M2	М3	M4	
13VM-D4-3333	750W	750W	750W	400W	
额定电流 (rmsA)	5.0	5.0	5.0	3.0	
最大电流 (rmsA)	15.0	15.0	15.0	9.0	
峰值电流(o-pA)	21.2	21.2	21.2	12.7	
TSVM-D4-5555	M1	M2	М3	M4	
13VM-D4-5555	750W	750W	750W	750W	
额定电流 (rmsA)	5.0	5.0	5.0	5.0	
最大电流 (rmsA)	15.0	15.0	15.0	15.0	
峰值电流(o-pA)	21.2	21.2	21.2	21.2	
电源电压	电源电压 单相 AC220V,-15~+10%,50/60Hz				

		工作: 0~55℃(若环境温度在 45~55℃时,平均负载率请勿		
使用	温度	超过 80%)		
环境		储存: -20~65℃		
	湿度	工作: 40%~80%(无结露) 储存: 93%以下(无结露)		
防护等级 IP20				
	控制方式	PWM 正弦波矢量控制		
	再生制动	外置		
	反馈方式	绝对值编码器		
	现场总线	兼容 EtherCAT 工业以太网现场总线		
	控制模式	位置/速度/转矩		
	控制输入	最多 12 个输入端子(光电隔离),功能可配置为:		
		伺服使能、报警清除、急停等		
控制输出 最多 4 个输出端子(光电隔离),最大输出电流 100m/		最多 4 个输出端子(光电隔离),最大输出电流 100mA		
抱闸输出 4路抱闸接口,可直接连接电机抱闸,单路最大电流		4 路抱闸接口,可直接连接电机抱闸,单路最大电流 1A		
位置	电子齿轮比	分子: 1~32767 分母: 1~32767		
14.14.	指令来源	总线指令、内部位置指令		
速度	指令加减速	参数设置		
还没	指令来源	总线指令、内部速度指令		
た上午口	速度限制	参数设置		
转矩	指令来源	总线指令、内部转矩指令		
特别功能增益切换、机械谐振陷波滤波器		增益切换、机械谐振陷波滤波器		
监视功能 转速、当前位置、位置偏差、		转速、当前位置、位置偏差、电机转矩、电机电流等		
保护功能 超速、过压、过流、过载、制动异常、编码器异常、位置起 等				

1.5 外观尺寸

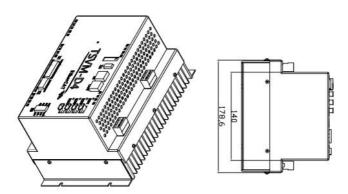


图 1-3 TSVM-D4 产品外形与安装尺寸(单位 mm)

□ 说明

- ▶ 结构尺寸及重量的变更恕不另行通知;
- > 安装建议使用 M4 螺钉, 长度不小于 16mm。

4

2 定义与配线

2.1 电源接口定义

表 2-1 电源接口定义

	引脚号	端子标号	名称	说明
\$4321	1	B1	制动电阻	电阻接在
	2	B2	接线端	B1 和 B2 之间
	3	L1	功率电	交流单相
PE L2 L1 B2 B1	4	L2	源输入	220V
	5	PE	地线	接大地

m

说明

- ▶ 单相电务必接到 L1 和 L2:
- ▶ 伺服驱动外接制动电阻阻值不小于 40 欧姆, 功率不小于 200W。

▶ L1、L2 间不能接交流 380V, 否则会烧坏驱动器。

2.3 电机动力线接口定义

表 2-2 电机动力线接口定义

	引脚号	端子标号	名称	说明
4 3 2 1	1	PE	电机动力	W 75 L L II
	2	U	线接线端	必须与电机 的 U、V、W、
	3	V		PE 端子对应
W V U PE	4	W	1	连接

□ 说明

- ▶ 4个轴动力接口定义一致;
- 电机输出 UVW 端子相序必须和驱动器相应端子一一对应,相序接错可能飞车。

2.3 编码器接口定义

表 2-3 编码器接口定义

	引脚号	名称	信号含义
	1	EC-5V	编码器电源输出,5V±5%
SDATA- 6 5 SDATA+	2	EC-GND	编码器电源/信号地, 0V
	3	NC	空引脚
NC 4 3 NC	4	NC	工力M
EC-GND 2 1 EC-5V	5	SDATA+	双向串行数据
	6	SDATA-	次同中日
	外壳	PE	屏蔽地

□ 说明

- ▶ 4个编码器接口定义一致;
- ▶ 不支持增量及省线式编码器;
- ▶ 编码器线缆超过10米以上的,且信号线缆直径不大于24AWG时,电源信号线需两根并接。

2.4 IO 输入信号 X1 接口定义

TSVM-D4 的 I0 端子 X1 包含 12 个开关量输入引脚,由参数 $Fn00^{\sim}Fn09$ 配置。总线通讯地址为 60FD,通过该地址可读取输入信号。

各引脚的标号和功能如下:

引脚号 名称 DI11 1 2 DT10 DT9 3 DI8 4 输入信号,高低 DI11 DI10 1 DI7 5 电平都可支持。 4 3 DI9 DI8 DI6 6 公共端接 24V, 6 5 DI7 DI6 DI5 信号端接 0V: 7 DI4 公共端接 0V, 信 7 DI5 DI4 8 号端接 24V。 DI3 9 DI2 10 9 DI3 DI2 10 DI0 12 11 DI1 DI1 11 DI COM 14 13 DI COM DIO 12 NC 16 15 NC DI COM 13 DI 公共端 DI COM 14 保留 15 保留 保留 16

表 2-4 IO 端子接口定义

単例

外接急停连接示意图:

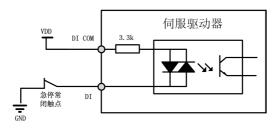


图 2-1 外接急停示意图

2.5 IO 输出信号 X2 接口定义

TSVM-D4 的 I0 端子 X2 包含 4个开关量输出引脚,能由参数 $Fn10^{\sim}Fn13$ 配置。总线通讯地址为 60FE,通过该地址可控制输出信号。

各引脚的标号和功能如下:

引脚号 名称 D03-1 2 D03+2 1 DO3-DO3+ D02-3 DO2+ 4 3 DO2-D02 +4 DO1+ 6 5 DO1-输出信号 D01-5 DO0+ 8 7 DO0-D01+ 6 D00-7 D00+ 8

表 2-5 IO 端子接口定义

単例

外接输出点连接示意图:

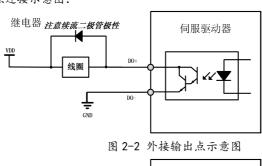


图 2-3 外接输出点示意图

2.6 抱闸信号 X3 接口定义

TSVM-D4 的端子 X3 包含 4 路抱闸输出,输出 24V,可直接与电机抱闸相连。各引脚的标号和功能如下:

	引脚号		名称
	1	BK24V	24V+输入
BK24V 2 1 BK24V	2	BK24V	2年(14回)人
BK2+	3	BK1+	
BK4+ 6 5 BK3+	4	BK2+	24V+抱闸输出
BKOV BKOV	5	BK3+	247年12月刊刊正
	6	BK4+	
	7	BKOV	0V 公共端
	8	BKOV	1 0 公分綱

表 2-6 IO 端子接口定义

単例

▶ 抱闸连接示意图:

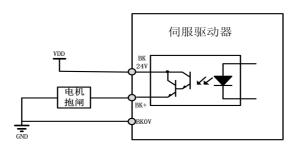
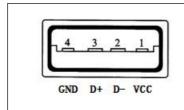


图 2-4 抱闸连接示意图


□ 说明

- ▶ 1、2 脚需要从外部开关电源引入两路 24V:
- ▶ 7、8 脚与外部开关电源的 COM 连接。

2.7 USB 调试口 X4 定义

用于固件更新及驱动调试

表 2-7 USB 引脚接口定义

引脚号	名称	信号含义	备注
1	VCC	USB 电源	标准
2	D-	USB 数据-	USB2.0
3	D+	USB 数据+	用于 PC 调 试 软
4	GND	电源地	件通讯

2.8 EtherCAT 通信口定义

本端子为标准 RJ45 接口,用于 EtherCAT 总线通信,IN 为输入,OUT 为输出,各引脚定义如下:

信号含义 备注 引脚号 名称 数据发送+ TX+ 1 数据发送-TX-2 RX+ 数据接收+ 3 标准以 4 太网接口 5 数据接收-6 RX-7 8

表 2-8 EtherCAT 通信口定义定义

说明

网络状态指示灯的显示状态:不亮表示没有连接;黄灯闪烁,绿灯常亮表示已连接或数据传输中。

3上位机软件使用说明

3.1 STP 上位机软件介绍

此软件用于协助调试伺服驱动,主要功能有参数修改、波形监控、报警查看等。

图 3-1 STP 软件界面

菜单栏按钮介绍如下:

连接/断开诵信:

切换轴号;

,参数保存;

· 软件复位;

. 使能按钮:

. 模式切换。

3.2 连接功能

上位机软件与驱动连接时需要用到一根标准 USB2.0 线缆,将驱动器与 PC 相连, 打开 STP 软件进入起始页。按照如下图 1-5 数字的顺序操作。连接成功后, STP 软件 的左边对话框会显示轴列表。若连接不成功,请检查设置是否有误,尤其是端口号是 否正确选择,可在"计算机—管理—设备管理器—端口"中查看相应的端口号。

图 3-2 软件连接顺序步骤图

□ 说明

STP 软件未连接驱动的情况下也可查看保存在 PC 中的参数或者波形文件,连接操作如下图。

图 4-3 离线连接顺序步骤图

3.3 轴通道列表

以轴 1 为例, 列表如下:

图 3-3 轴通道列表

3.3.1 电机

用于电机参数匹配,TSVM-D4系列驱动对部分厂家的电机能自动识别电机参数,对部分厂家的电机需通过代码来识别,这两种情况下不需再设置电机参数,若两者都

不满足则需通过此界面输入电机参数。

图 3-4 电机参数表

- ▶ 电机自动相位一般不需要修改:
- ▶ PA18 请务必改为 001;
- > 注意电机各参数的单位。

3.3.2 限幅

按照实际情况设置数值,一般情况下用户无需修改限幅参数。

图 3-5 限幅参数表

3.3.3 电流环

可设置电流环相关参数。

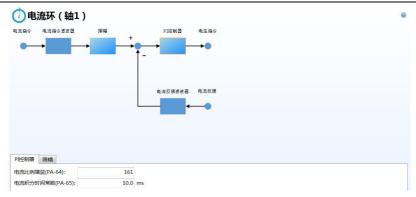


图 3-6 电流环参数表

3.3.4 速度环

可设置速度环相关参数。

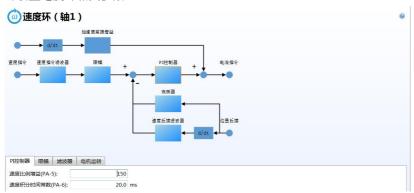


图 3-7 速度环参数表

□ 说明

▶ 在 "电机运转"栏中设置一定的转速,按"正转"、"反转"按钮,驱动在使能的情况下,能点动电机。

3.3.5 位置环

可设置位置环相关参数。

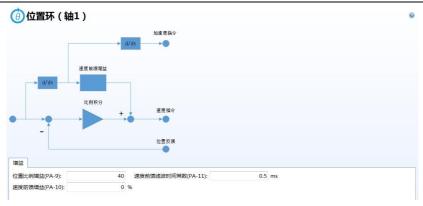


图 3-8 位置环参数表

3.3.6 参数

用于查看及设置驱动参数,此界面可分别显示"PA运行参数"、"Fn辅助参数"、"DI电机参数"。

图 3-8 详细参数列表

以下详细介绍参数修改保存的方法:

参数修改及保存

点击需要修改的参数,输入数值,按回车键,此时参数在线生效。若需长时生效则需点击 STP 软件的"下载"按钮,再点击菜单栏的"参数保存"按钮,再点击菜单栏的"软件复位"按钮,参数即生效。参数是否需要保存重启生效请查看第"5章 参数一览表说明"

参数导出

此功能可将驱动参数保存到 PC 中。

点击"导出"按钮,界面弹出如下对话框,选择保存路径,输入文件名,保存类型默认为"txt"格式,点击"保存"按钮。



图 3-9 参数导出界面

参数导入

此功能可将 PC 中保存的参数导入 STP 软件中。

点击"导入"按钮界面弹出如下对话框,选择文件所在路径路径,选择文件,点击"打开"按钮。

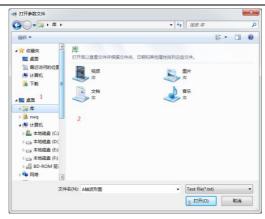


图 3-10 参数导入界面

3.3.7 示波器

STP 软件可最多支持 8 个参数通道,在得到返回数据后将数据绘制出来。

图 3-11 波形显示界面

以下详细介绍示波器的使用方法:

采集波形

点击"通道"按钮,选择通道后弹出对话列表,选择所需的监控项,点击"开始"按钮,STP软件开始采集波形,点击"停止"按钮,示波器停止采集波形,此时将鼠标

放在波形上点击鼠标右键或者移动鼠标滚轮,可对波形进行编辑。

波形导出

点击"导出"按钮,弹出类似"图 3-9"对话框,按照上述步骤可将波形文件保存到 PC中。

波形导入

点击"导入"按钮,弹出类似"图 3-10"对话框,按照上述步骤可将 PC 中的波形文件导入 STP 软件中。

惯量识别

在参数界面把 PA38 改为 17,在示波器界面通道栏"1"选择"用户设定 3 (14)",在"惯量识别"栏把 Fn69 改为 3,点击"使能"按钮,点击"开始"按钮,驱动开始采集波形,将采集的数值输入 PA29 中,参数保存。

□ 说明

- ▶ 惯量识别时, 电机会来回旋转 3~5 圈, 请校核移动距离:
- ▶ 惯量识别后通过 PA33 设置刚性等级,数值越大刚性越强,以下为经验值可供参考:

推荐刚性等级	负载机构类型
4级到8级	一些大型机械
8级到15级	皮带等刚性较低的机械
15 级到 20 级	滚珠丝杠,直线等刚性较强的机械

3.3.8 报警

当驱动有报警时可在此界面查看,也可点击 STP 软件右下角的"报警"按钮查看报警内容。

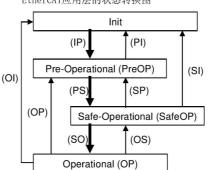
图 3-12 报警显示界面

山 说明

▶ 报警代码列表的高位表示轴号,如124表示轴1报警24。

4通讯功能

4.1 Ether CAT 通信基础


4.2.1 EtherCAT 通信

EtherCAT 是 Ethernet for Control Automation Technology 的缩写,是使用德国 BECKHOFF 公司开发的实时以太网主从机之间的通信方式,由 ETG 进行管理。

EthCAT 使用的是以 IEEE 802.3 为标准的 Ethernet 框架。

4.2.2 Ether CAT 状态机

EtherCAT 应用层的状态(ESM 状态)的转化图如下图所示:

EtherCAT应用层的状态转换图

图 4-1 状态转换图

EtherCAT 必须支持 4 种状态,负责协调主站和从站应用程序在初始化和运行状态的状态关系。

从初始化状态向运行状态转化时,必须按照"初始化→预运行→安全运行→运行"的顺序转化,不可越级。从运行状态返回时可以越级转化。状态的转化操作和初始化过程如下表:

		通信动作		
状态	各状态下获取的动作	SD0 (邮箱) 收发信	PDO 发信 (S to M)	PDO 收信 (M to S)
Init	通信部的初始化中,SDO(Mailbox)收发信,PDO无法收发信的状态	_	-	-
Pre-Operational (略称:PreOP)	SDO(Mailbox)可以收发信的状态	Yes	-	-

· ·	除了SDO(Mailbox)收发信可以通过 PDO的发信(从站到主站)的状态	Yes	Yes	-
Operational (略称:OP)	SDO(Mailbox)收发信、PDO收发全部可行状态	Yes	Yes	Yes

4.2.3 通信同期模式

TSVM-D4 系列可以选择以下的同期模式:

同期模式	内容	同期方法	特征
DC	SYNCO事件同期	以第1轴的时间为基准同期其他从站的时间信息	高精度; 需要在主站侧进行补偿处 理。
SM2	SM2 事件同期	xPDO 的收信事件同期	没有传送延时补偿,精度差; 一定要在上位控制器侧保证 传送时间(专用硬件等)。
FreeRun	非同期	非同期	处理简单; 欠缺实时性。

4.2.4 邮箱数据 SD0

TSVM-D4 系列支持 SD0 (Service Data Object)。SD0 的数据交换使用 Mailbox 通信,因而请注意 SD0 的数据刷新时间变得不稳定,主站侧在对象字典内的记录中读写数据,可进行对象设定以及从站的各种状态的监测。

如果 SDO 数据交换处理 (read/write) 失败,返回所谓 Abort message 的 Abort code 的报警信息。Abort message 只有 SDO 数据交换处理的报警处理,在 PDO 数据交换处理中没有 Abort message。Abort code 的内容可能会根据存取条件而有差异。

说明

- 》 到 SDO 的读写动作的响应需要花费时间。
- ▶ 用 PDO 刷新的对象请不要用 SDO 刷新。

4.2.5 过程数据 PD0

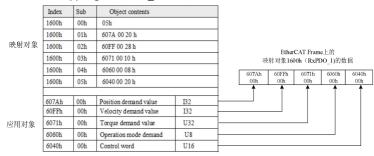
TSVM-D4 系列支持 PDO。对于 EtherCAT 实时数据的转送,通过 PDO 的数据交换执行。PDO 有从主站到从站转送的 RxPDO 和从从站到主站转送的 TxPDO。

	送信侧	收信侧
RxPD0	主站	从站
TxPD0	从站	主站

▶ PDO 正在更新的对象请不要更新 SDO。

1) PD0 映射对象

PDO 映射指从对象字典到 PDO 的应用对象的映射,每个伺服轴的 PDO 映射偏移为 0x40。TSVM 作为 PDO 映射用的一览表,四个轴的 RxPDO、TxPDO 配置对象如下:


轴 1 中 RxPDO 的配置对象: 1600h~1603h, TxPDO 的映射对象: 1A00h~1A03h; 轴 2 中 RxPDO 的配置对象: 1640h~1643h, TxPDO 的映射对象: 1A40h~1A143h;

轴 3 中 RxPDO 的配置对象: 1680h~1683h, TxPDO 的映射对象: 1A80h~1A83h:

轴 4 中 RxPDO 的配置对象: 16C0h~16C3h, TxPDO 的映射对象: 1AC0h~1AC3h;

単例

以 Axis-1 轴为例: 分配应用对象 607Ah, 60FFh, 6071h, 6060h, 6040h 到映射对象 1600h (Receive PDO mapping 1:RxPDO 1)的情况。

在多轴应用中,PDO 的映射关系以 Module 形式存在,每个 Module 表示一种有效的 PDO 配置,Module 的具体定义请参考对应的 XML 文件。每个伺服轴对应 1 个 Slot,轴 1/2/3/4 分别对应 Slot1/2/3/4,每个伺服轴需要选定一个有效的 Module 作为当前的 PDO 配置。上例配置中的对象以 Axis-1 轴对象作为参考,后续各个轴对象的 Index 都在前一个轴对应对象 Index 的基础上增加 0x800。

2) PDO 分配对象

因为 PDO 数据交换,必须分配 PDO 映射用的表到 SyncManager。对 SyncManager PDO 分配对象记述 PDO 映射用的表和 SyncManager 的关系。作为 SyncManager PDO 分配对象可以使用 RxPDO(SyncManager2)用 1C12h、TxPDO(SyncManager3)用 1C13h。

一个分配对象以下所示可以分配的应用对象的最大数。通常因为映射对象 1 个就 足够了,所以默认的不需要变更。

4.2.6 分布时钟

分布时钟可以使所有 EtherCAT 设备使用相同的系统时间,从而控制各设备任务的同步执行。从站设备可以根据同步的系统时间产生同步信号,TSVM-D4 系列驱动中,仅

支持 DC 同步模式,同步周期由通过 EtherCAT 主服务器的 SYNCO 事件实现,周期范围根据不同的运行模式而不同。

4.3 驱动模式

在多轴应用中 Axis-1、Axis-2、Axis-3、Axis-4 四个轴的操作相互独立,对象传输数据、状态机、控制环路等都是独立的,以下类容适用于上述四个轴的任何一个轴,以 Axis-1 轴为例。

4.3.1 伺服状态机

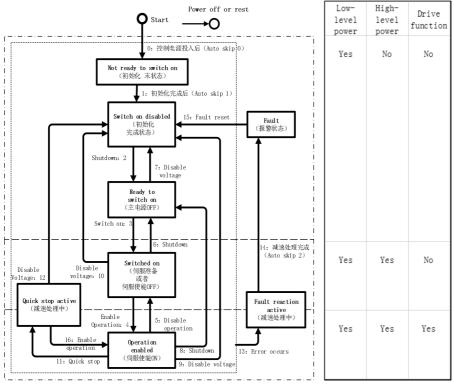


图 4-2 状态转换图

伺服准备状态条件是 High-level power(主电源)为 ON 的状态, High-level power(主电源)是 OFF 的状态,不在伺服准备状态下,则不能转换到 Switched on 状态。转换到 Operation enabled(伺服使能 ON)后,提升到 100ms 以上时间,输入动作指令。

运行模式通过 6060h (运行模式)可以变更。在服务器运行模式的选择与关联目标

的变更同时进行。若主服务器切换为新的运行模式立即切换成相同的模式。

	CiA402 状态切换	控制字 6040h	状态字 6041h
0	上电→初始化 Start→Not ready to switch on	自然过渡,无需控制指令	0000h
1	初始化→伺服无故障 Not ready to switch on→Switch on disabled	自然过渡,无需控制指令 若初始化中发生错误,直接进入 13	0270h
2	伺服无故障→伺服准备好 Switch on disabted→Ready to switch on	0006h	0231h
3	伺服准备好→等待打开伺服使能 Ready to switch on→Switched on	0007h	0233h
4	等待打开伺服使能-伺服运行 Switched on→Operation enabled	000Fh	1237h
5	伺服运行→等待打开伺服使能 Operation enabled→Switched on	0007h	0233h
6	等待打开伺服使能→伺服准备好 Switched on→Ready to switch on	0006h	0231h
7	伺服准备好→伺服无故障 Ready to switch on→Switch on disabled	0000h	0270h
8	伺服运行→伺服准备好 Operation enabled→Ready to switch on	0006h	0231h
9	伺服运行→伺服无故障 Operation enabled→Switch on disabled	0000h	0270h
10	等待打开伺服使能→伺服无故障 Switched on→Switch on disabled	0000h	0270h
11	伺服运行→快速停机 Operation enabled→Quick slop active	0002h	0217h
12	快速停机→伺服无故障 Quick stop active→Switeh on disabled	快速停机方式 605A 选择 为 0~3, 停 机完成后,自 然过渡,无需控制指 令	0270h
13	→故障停机 →Fauh reaction active	除"故障"外其他任意状态下,伺服驱动器一旦发生故障,自动切换到故障停机状态,无需控制指令	02B6h
15	故障→伺服无故障 Fault→Switch on disabled	0080h bit7 上升沿有效; bit7 保持为 1, 其他控制 指令均无效。	0270h

Axis-2、Axis-3、Axis-4 轴具有相同的功能, 但使用的对象与 Axis-1 不同。

4.3.2 控制字 6040h、6840h、7040h、7840h

Index	Sub-Index	N	ame	Ran	nge	Data Type	Access	PDO	OP-mode	
mucx	Sub-macx	Controlword		0-65535 U16		U16	rw	RxPDO	ALL	
		设置控制指	(令:							
			bit		名	称			描述	
		0	可以开启伺息	报运行	Swit	ch on	1-有效	,0-无效		
		1	接通主回路	各电	Enab	le voltage	1-有效	,0-无效		
		2	快速停机		Quic	k stop	0-有效	,1-无效		
	0.01	3	伺服运行		Enable operation		1-有效, 0-无效			
	00h	4~6	5 运行模式相		Operation mode specific		与各伺服运行模式相关			
		7	故障复位		Fault reset		对于可复位故障和报警,执行故障复位功能,bit7上升沿有效,bit7保持为1,其它控制指令与无效			
		8	暂停		halt		各模式下的暂停方式请查 询对象字典605Dh		式请查	
		9 运行模		莫式相关 Operation mode specific			与各伺服运行模式相关		和关	
		10~11	保留		reve	erse	预留,	厂家自定义		
		12	编码器多圈	圖清除	Enco	der_reset	置1清陽	徐编码器多	蜀数据	
		13 [~] 15	保留		reve	erse	预留,	厂家自定义		

注意

- ▶ 在各伺服模式下意义相同,每一个bit 位单独赋值无意义,必须与其他位共同构成某一控制指令;
- ▶ Bit0[~]Bit3、Bit7在各伺服模式下意义相同,必须按顺序发送命令,才可将伺服按照 CiA402 状态机切换流程引导进入预计的状态:
- ▶ Bit4~Bit6与各伺服模式相关(请查看不同模式下的控制指令)。

4.3.2 状态字 6041h、6841h、7041h、7841h

T. 1.	CLLL	N	ame	Ran	ige	Data Type	Access	PDO	OP-mode
Index	Sub-Index	Statu	ısword	sword 0-65		U16	ro	TxPDO	ALL
		设置控制指	(令:						
		bit			名	弥		招	描述
		0	伺服准备好	ř	Read	y to switch	on	1-有效	,0-无效
		1	可以开启伺服	运行	Swit	ch on		1-有效	,0-无效
		2	伺服运行		Enab	le operation	ı	1-有效	,0-无效
		3	故障		Faul	t		1-有效	,0-无效
		4	接通主回路电		Enable voltage		1-有效	1-有效,0-无效	
	0.01	5	快速停机		Quick stop		0-有效	,1-无效	
	00h	6	伺服不可运行		Switch on disabied		1-有效	,0-无效	
		7	警告		Warning		1-有效	,0-无效	
		8 Л		۷.	Manufacturer-specific 未定义功		功能		
		9	远程控制		remo	te		1-有效, 持 0-无效	空制字生效;
		10	目标达到		Targ	et reach		1-有效	,0-无效
		11	内部限制有	 	Inte	rnal limit a	active	1-有效	,0-无效
		12 [~] 13	运行模式机	目关	0per	ation mode :	specific	与各伺 模式相	服运行 关
		14	厂家自定义	۷ .	Manu	facturer-speci	fic	未定义	功能
		15	原点已找到	IJ	Home	find		1-有效	,0-无效

▶ Bit0~Bit3、Bit5、Bit6: 根据此 Bit 可确认 PDS 的状态,以下表示状态和对应的bit

状态字	PDS state		
xxxx xxxx x0xx 0000 b	Not ready to switch on	初始化 未完成状态	
xxxx xxxx x1xx 0000 b	Switch on disabled	初始化 完成状态	
xxxx xxxx x01x 0001 b	Ready to switch on	主电路电源 OFF 状态	
xxxx xxxx x01x 0011 b	Switched on	伺服使能 OFF / 伺服准备	
xxxx xxxx x01x 0111 b	Operation enabled	伺服使能 ON	
xxxx xxxx x00x 0111 b	Quick stop active	即停止	
xxxx xxxx x0xx 1111 b	Fault reaction active	异常(报警)判断	
xxxx xxxx x0xx 1000 b	Fault	异常(报警)状态	

▶ Bit4: 显示 1,表示主电路继电器吸合;

▶ Bit7: 显示 1,表示发生报警;

▶ Bit9: ESM 状态切换到 PreOP 以上时变为 1;

▶ Bit10、Bit12、Bir13:表示控制模式固有的 oms Bit 的变化。

Op-mode	bit13	bit12	bit10
pp	following error	set-point acknowledge	target reached
pv	max slippage error (Not supported)	speed	target reached
tq	ı	-	target reached
hm	homing error	homing attained	target reached
ip	ı	ip mode active	target reached
csp	following error	drive follows command value	-
csv	-	drive follows command value	-
cst	-	drive follows command value	-

4.4 控制模式

在多轴应用中 Axis-1、Axis-2、Axis-3、Axis-4 四个轴的操作相互独立,对象传输数据、状态机、控制环路等都是独立的,以下类容适用于上述四个轴的任何一个轴,以 Axis-1 轴为例。

4.4.1 伺服模式介绍

TSVM 系列支持3种伺服模式,可以根据6502h确认支持控制模式。

Index	Sub-Index	Name/ Description							
		Supporte	ed drive modes						
	·Yes表示支持的控制模式,No表示不支持								
		值	操作显示模式	简称	对应				
		0	Profile position mode(Profile 位置控制模式)	pp	No				
		1	Velocity mode(速度控制模式)	v1	No				
		2	Profile velocity mode(Profile 速度控制模式)	pv	No				
6502h	00h	3	Torque profile mode(Profile 转矩控制模式)	tq	No				
		4	Homing mode(原点复位位置控制模式)	h	No				
		5	Interpolated position mode(补偿位置控制模式)	ip	No				
		8	Cyclic synchronous position mode(周期位置控制模式)	csp	Yes				
		9	Cyclic synchronous velocity mode(周期速度控制模式)	csv	Yes				
		10	Cyclic synchronous torque mode(周期转矩控制模式)	cst	Yes				

伺服预运行模式可通过 6060h 进行设定, 伺服当前运行模式可通过 6061h 查看。

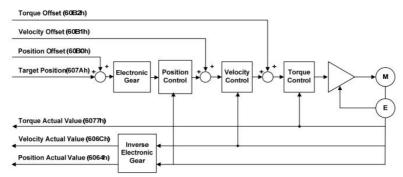
(1)6060h

Sub-Index		Name/Description					
	•	Modes of operation ・Yes表示支持的控制模式,No表示不支持					
	值	操作显示模式	简称	对应			
	-1281	Reserve	Ī	-			
00h	0	No mode change/no mode assigned(模式未变更/模式	ı	Yes			
	8	Cyclic synchronous position mode(Cylcic 位置控制模式)	csp	Yes			
	9	Cyclic synchronous velocity mode(Cyclic 速度控制模式)	csv	Yes			
	10	Cyclic synchronous torque mode(Cyclic 控制模式)	cst	Yes			
	11 -27	Reserved	-	_			
	Sub-Index 00h	Modes of ope • Yes表示 值 -1281 00h 8 9 10	Modes of operation • Yes表示支持的控制模式, No表示不支持 值 操作显示模式 —128 —1 Reserve 0 No mode change/no mode assigned(模式未变更/模式 8 Cyclic synchronous position mode(Cyclic 位置控制模式) 9 Cyclic synchronous velocity mode(Cyclic 速度控制模式) 10 Cyclic synchronous torque mode(Cyclic 控制模式)	Modes of operation • Yes表示支持的控制模式, No表示不支持 值 操作显示模式 简称 -1281 Reserve - 0 No mode change/no mode assigned(模式未变更/模式 - 8 Cyclic synchronous position mode(Cylcic 位置控制模式) csp 9 Cyclic synchronous velocity mode(Cyclic 速度控制模式) csv 10 Cyclic synchronous torque mode(Cyclic 控制模式) cst			

(2)6061h

Index	Sub-Index		Name/Description							
			ration							
		· `	Yes表示	支持的控制模式,No表示不支持						
			值	操作显示模式	简称	对应				
			-1281	Reserved	-	_				
6061h	00h		0 1	No mode change/no mode assigned(模式未变更/模式未设定)	-	Yes				
			Q I	Cyclic synchronous position mode(Cyclic 位置控 制模式)	csp	Yes				
							a i	Cyclic synchronous velocity mode(Cyclic 速度控 制模式)	csv	Yes
			10 1	Cyclic synchronous torque mode(Cyclic 转矩控制 模式)	cst	Yes				
			11 -127	Reserved	-	-				

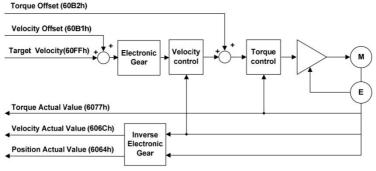
- ▶ 通过变更 6060h (运行模式)的值,可以切换控制模式;
- ▶ 请在 6061h (运行显示模式)确认现在的伺服驱动器的控制模式:
- ▶ 控制模式切换时,请更新和6060h 同步的控制模式相关的 RxPD0 的对象:
- ▶ 在变更后的控制模式下,不支持的对象的值是不定的;
- 从控制模式变更时到切换完成需要花费 2ms,此期间 6061h 和控制模式相关的 TxPDO 的对象值是不定的:
- ▶ 控制模式的切换请执行在 20ms 以上。短于 20ms 间隔在控制模式连续切换的情况下会发异常:
- ▶ 控制模式的切换必须在电机停止中进行。无法保证电机动作中(包含原点回归动作


中、减速停止中)控制模式切换情况的动作。无法立即切换模式,或者会发生异常;

- 6060h=0 且 6061h=0 的状态下,如果转换 PDS 状态到"Operation enabled",会发生异常动作:
- ▶ 6060h 设定 0 以外的值后,如果设定 6060h=0 则保持前次的控制模式。

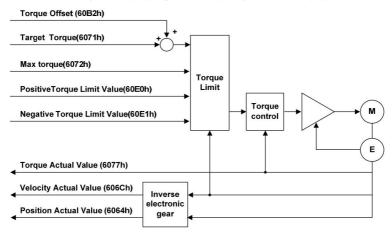
4.4.2 伺服模式切换

1) 周期同步位置模式


通过主站生成指令位置,根据同步周期更新指令位置,进行的位置控制模式。

索引	子索引	名称	单位	类型	权限	pdo
6064h	_	实际位置(position actual value)	指令单位	I32	ro	TxPD0
606Ch	_	实际速度(velocity actual value)	指令单位/s	I32	ro	TxPD0
6077h	-	实际转矩(torque actual value)	0. 1%	I16	ro	TxPD0
607Ah	_	目标位置(target position)	指令单位	I32	rw	RxPD0
60B0h	_	位置偏差 position Offset)	指令单位	I32	rw	RxPD0
60B1h	_	速度偏差(velocity Offset)	指令单位/s	I32	rw	RxPD0
60B2h	_	转矩偏差(torque Offset)	0.1%	I16	rw	RxPD0

2) 周期同步速度模式


通过主站生成指令速度,根据同步周期更新指令速度,进行动作的速度控制模式。

索引	子索引	名称	单位	类型	权限	pdo
6064h	-	实际位置(position actual value)	指令单位	I32	ro	TxPD0
606Ch	-	实际速度(velocity actual value)	指令单位/s	I32	ro	TxPD0
6077h	-	实际转矩(torque actual value)	0.1%	I16	ro	TxPD0
60B1h	_	速度偏差(velocity Offset)	指令单位/s	132	rw	RxPD0
60B2h	_	转矩偏差(torque Offset)	0. 1%	I16	rw	RxPD0
60FFh	_	目标速度(target velocity)	指令单位/s	132	rw	RxPD0

3) 周期同步转矩模式

通过主站生成指令转矩, 根据同步周期更新指令转矩, 进行动作的转矩控制模式。

索引	子索引	名称	单位	类型	权限	pdo
6064h	_	实际位置(position actual value)	指令单位	I32	ro	TxPD0
606Ch	_	实际速度(velocity actual value)	指令单位/s	I32	ro	TxPD0
6071h	-	目标转矩(target torque)	0.1%	I16	rw	RxPDO
6072h	_	转矩最大值(Max torque)	0.1%	U16	rw	RxPDO
6077h	_	实际转矩(torque actual value)	0.1%	I16	ro	TxPDO
60B2h	_	转矩偏差(torque Offset)	0.1%	I16	rw	RxPDO
6080h	_	最大电机速度(Max motor speed)	r/min	U32	rw	RxPDO

4.4.3 常用对象说明

1、制造商特定协议区域

Axis-1: 2000h~27FF; Axis-2: 2800h~2FFF; Axis-3: 3000h~37FF; Axis-4: 3800h~3FFF。

2、控制字

Axis-1: 6040h; Axis-2: 6840h; Axis-3: 7040h; Axis-4: 7840h.

3、状态字

Axis-1: 6041h; Axis-2: 6841h; Axis-3: 7041h; Axis-4: 7841h

4、运行模式

Axis-1: 6060h: Axis-2: 6860h: Axis-3: 7060h: Axis-4: 7860h.

5、目标位置

Axis-1: 607Ah; Axis-2: 687Ah; Axis-3: 707Ah; Axis-4: 787Ah

6、目标速度描述

Axis-1: 60FFh; Axis-2: 68FFh; Axis-3: 70FFh; Axis-4: 78FFh

7、目标转矩

Axis-1: 6071h: Axis-2: 6871h: Axis-3: 7071h: Axis-4: 7871h

8、当前实际位置值

Axis-1: 6064h; Axis-2: 6864h; Axis-3: 7064h; Axis-4: 7864h

9、当前实际速度值

Axis-1: 606Ch; Axis-2: 686Ch; Axis-3: 706Ch; Axis-4: 786Ch

10、当前实际转矩值

Axis-1: 6077h; Axis-2: 6877h; Axis-3: 7077h; Axis-4: 7877h.

5参数一览表

5.1 分配一览表

本说明书所使用的参数, Axis-1、Axis-2、Axis-3、Axis-4 四个轴的参数分别作用于对应的轴,以 Axis-1 轴为例。

序号	名称	参数范围	出厂值	单位	参数说明	总线 地址
PA0	参数密码	0~9999	315		修改电机型号及编 码器类型密码为 310 或 385	2000h
PA1★	电机型号	1~132	1			ı
PA2★	驱动器型号	0~4	0			-
PA4★	控制方式	0~16	8		8: 总线模式	-
PA5	速度比例增益	2~2000	150*			2005h
PA6	速度积分时间常数	1.0~ 1000.0	50.0*	ms		2006h
PA9	位置比例增益	1~1000	50*			2009h
PA10	速度前馈增益	0~200	0	%		-
PA12★	位置指令脉冲分频分子	1~32767	1			ı
PA13★	位置指令脉冲分频分母	$1\sim 32767$	1			ı
PA14★	位置指令脉冲输入方式	0~4	0		0: 总线指令(增量 电机) 3: 总线指令(绝对 电机)	-
PA15★	指令方向取反设置	00000b~ 11111b	00000Ъ		Bit0: 位置指令方 向取反 Bit1: 速度指令方 向取反 Bit2: 转矩指令方 向取反	-
PA17	位置超差检测范围	0~3000	30		x0.1 圏	ı
PA18	绝对式编码器使用方式	00000b~1 1111b	00101b		Bit0: 是否使用电 池 Bit2: 电机参数自 动识别 Bit3: 三 协 磁 编 电池报警	2012h
PA21	JOG 运行速度/转矩模式 最高速度	0~3000	300	rpm		-
PA22★	速度指令来源选择	0~2	0		0: 速度来源总线	-
PA23★	用户设定最高速度限制 百分比	1~200	100	%	限制转速为电机最 高转速与此参数的 乘积	-
PA25	转矩指令来源选择	0~8	0		3: 指令来源总线	-
PA27	内部速度指令1	−9000~ 9000	0	rpm		_

DAGO	A 卦 廿 → 栅 目 山	0 0000	000	0/		00101
PA29 PA30★	负载转动惯量比 电机转矩过载报警值	0~8000 10~300	200 160	%		201Dh
PA30 X	电机转起过载报音值 刚性等级	0~31	0	70		2021h
PA38	DP 菜单动态显示项	0~300	0			2021h
PA40	加速时间常数	0~10000	20	ms	0 至最高转速时间	_
PA41	减速时间常数	0~10000	20		最高转速至0时间	
PA41			20	ms	设置 0 为默认 17	_
PA45★	绝对式编码器单圈位数	0~30	0		位	-
PA47	电机静止时使能断开等 待时间	0~5000	0	ms		-
PA48	电机运转时电磁制动器 制动等待时间	0~5000	50	ms		-
PA49	电机运转时制动器动作 速度	0~3000	100	rpm		_
PA50	电机使能时制动器打开 延时	0~3000	20	ms		_
PA51★	制动电阻选择开关	0~1	0		0:选择内部制动 1:选择外部制动	-
PA52	位置指令平滑时间常数	0.0~ 100.0	0.0	ms		-
PA53	低 5 位输入端子强制 ON	00000b ~11111b	00000b		二进制	_
PA55	低 5 位输入端子逻辑取 反	00000b ~11111b	00000b		二进制	-
PA57	输出端子逻辑取反	00000b ~11111b	00000b		二进制	-
PA61★	电机编码器类型设置	-1 [~] 7	2		2:多摩川协议 5:松下协议	-
PA62	报警屏蔽设置位	00000b ~11111b	00000ь		Bit0:保留 Bit1:Err35 Bit2:Err6 Bit3:Err5 Bit4:Err14	-
PA64	电流比例增益	1~500	150*			-
PA65	电流积分时间常数	1~100. 0	20.0*	ms		-
PA69★	外接制动电阻阻值	0~750	50	Ω		-
PA70★	外接制动电阻功率	0~10000	200	W		_
PA74	内部电流指令	−300∼ 300	0	%		-
PA80	绝对式编码器复位设置	00000b~1 1111b	00000b			2050h
PA81★	电机每旋转一圈的指令 脉冲数低位	0~32000	0			2051h
PA84★	电机每旋转一圈的指令 脉冲数高位	0~10000	0		电机每转脉冲= PA84x10000+PA81	2054h

_						
	PA87★	PHY 芯片 MDC 地址	0~6	1	ALL	2057h

▶ 带"★"的参数,修改后需保存重启才生效。

5.2 Fn 参数一览表

DI 参数一览表:

序号	名称	参数范围	出厂值
Fn0	数字输入 DIO 功能	0~31	1
Fn1	数字输入 DI1 功能	0~31	2
Fn2	数字输入 DI2 功能	0~31	3
Fn3	数字输入 DI3 功能	0~31	4
Fn4	数字输入 DI4 功能	0~31	5
Fn5	数字输入 DI5 功能	0~31	6
Fn6	数字输入 DI6 功能	0~31	7
Fn7	数字输入 DI7 功能	0~31	8
Fn8	数字输入 DI8 功能	0~31	9
Fn9	数字输入 DI9 功能	0~31	10

设置数字 IO 输入对应的点位功能,功能码如下表所示:

序号	符号	DI 功能	序号	符号	DI 功能
0	NULL	无定义	1	SON	_
2	ALM_RST	_	3	RSV	_
4	RSV	_	5	E-Stop	紧急停止

将输入信号 Fn 参数改为 0, 可通过总线地址 60FD 读取输入信号。

DO 参数一览表:

序号	名称	参数范围	出厂值
Fn10	数字输出 D00 功能	0~15	1
Fn11	数字输出 D01 功能	0~15	2
Fn12	数字输出 D02 功能	0~15	3
Fn13	数字输出 D03 功能	0~15	4

设置数字 IO 输出对应的点位功能, 功能码如下表所示:

序号	符号	DO 功能	序号	符号	DO 功能
0	NULL	系统通过总线控制输出	1	SRDY	所有轴都准备好
2	ALM	伺服报警	3	_	未定义功能
4	RUN	至少一个伺服使能	-	-	-

将输出信号 Fn 参数改为 0,可通过总线地址 60FE 控制输出信号。

▶ 同一个 DI 功能不能分配给 2 个或以上的 IO 输入端子, 否则报警 Err26 (IO 输入端子功能配置异常

6 故障报警

控制器通过索引 0x603f、0x683f、0x703f、0x783f 获取轴 1~4 的报警号。

6.1 公共报警

公共报警是指不区分轴号,报警级别高于单轴报警,当公共报警和单轴报警同时发生时,驱动只能上传公共报警。为了避免与单轴报警号冲突,将公共报警号加70后,上传至报警索引号。例如公共报警为3,系统通过0x603f获取的报警号为73。

公共报警一览表 (★表示不可软件复位)						
报警代码	报警名称	内容	可复位	可急停		
1★	看门狗错误	内部中断看门狗错误				
2	过压	主电路电源电压过高	√			
3	主电源掉电	主电路电源掉电	√	√		
5	使能状态下欠压	使能时母线电压低于 190V	√			
10★	风扇故障报警			√		
11★	IPM 故障(过流或过温)	IPM 智能模块故障				
14	再生制动故障	再生制动电路故障	√			
16	制动率过高	制动率超出合理值	√			
17★	外部制动电阻阻值错误	制动电阻阻值小于允许值				
21	总线数据连续错帧	相当于单轴 Err40	√	√		
22★	总线网络连接状态发生变化	相当于单轴 Err41		√		
25	急停输入报警	急停输入信号有效	√	√		
26	IO 输入功能配置错误		√	√		

表 6-1 公共报警一览表

6.1.1 常见报警处理方法

2号报警: 主电路过压

运行状态	原因	处理方法
接通控制电源时出现	电路板故障	将驱动上除进线电源外,其余全部拆除,上电后驱动还是有报警 2,说明驱动硬件故障,更换驱动
接通主电源时出现	主回路输入电压过高	检查供电电源 220V 是否符合以下规格: 有效值: 220V~240V 允许偏差: -10%~10%(198V~264V) 查看 dP 菜单下的母线电压监控项
	电源电压处于不稳定状态	测量输入电源是否稳定
电机运行过	制动回路容量不够	使用外接制动电阻或增加制动电阻容量
程中出现	电机处于急加减速状态,最大制动能量 不能完全被吸收	在允许的情况下增大加减速时间

母线电压采样电路故障	查看 dP 菜单下的 2.4 dc 显示值是否正常 (显示值为输入电压的 1.414 倍)
伺服驱动器故障	更换伺服驱动器
UVW 与 PE 短路	动力线缆短路后会造成母线电压升高,但本机可能不会报警 2,同电源的其他驱动会报警 2

3号报警:主电源掉电

运行状态	原因	处理方法
	交流主电源没有电压	检查 L1、L2 进线是否有电压
接通主电源时出现	伺服驱动器故障	将驱动上除进线电源外,其余全部拆除,上 电后驱动还是有报警3,说明驱动硬件故障, 更换驱动

5号报警:主电源欠压报警

运行状态	原因	处理方法
	使能状态下母线电压低于 190V	检查 L1、L2、L3 进线电压
接通主电源时出现	伺服驱动器故障	将驱动上除进线电源外,其余全部拆除,上 电后驱动还是有报警 5,说明驱动硬件故障, 更换驱动

11 号报警: IPM 故障

运行状态	原因	处理方法
	驱动器 UVW 之间短路或接触不良	检查接线,测量 UVW 间电阻是否平衡
		测量驱动器 UVW 端与接地线 PE 之间的绝缘电
	电机绝缘损坏	阻是否为兆欧(MΩ)级数值,绝缘不良时更
		换电机
 电机运行过	增益设置不合理,电机振荡	进行增益调整
程中出现	控制输入指令设定异常	检查控制输入指令是否变动过于剧烈,修正
1主1.四%	江門柵八日マ灰是开市	输入命令变动率或调整滤波参数
	接地不良	检查接地线 PE 是否正确连接
	机械卡死	检查机械是否卡死
	编码器零点错误	校正编码器零点,或者读取编码器零点偏置
	게 FO III 즉 XX II V	值,将此值填入 dJ 的 12/13 参数中
接通控制电		将驱动上除进线电源外,其余全部拆除,上
源时出现	驱动器损坏	电后驱动还是有报警11,说明驱动硬件故障,
4次11日20		更换驱动
电机使能时	驱动器 UVW 之间短路或接触不良	检查接线,测量 UVW 间电阻是否平衡
出现	电机刹车没打开	检查电机刹车是否打开

16 号报警:制动电阻制动率过高

运行状态	原因	处理方法
接通主电源	主回路输入电压过高	检查供电电源 220V 是否符合以下规格: 有效值: 220V~240V 允许偏差: -10%~10%(198V~264V) 查看 dP 菜单下的母线电压监控项
时出现	电源电压处于不稳定状态	测量输入电源是否稳定
	电路板故障	将驱动只接电源线 L1/L2, 若通电后驱动还 是报警 16, 说明驱动硬件故障, 更换驱动
	制动回路容量不够	使用外接制动电阻或增加制动电阻容量
	电机处于急加减速状态,最大制动能量 不能完全被吸收	适当减小外接制动电阻阻值,增大外接制动 电阻功率 在允许的情况下增大加减速时间
电机运行过	母线电压采样电路故障	监控母线电压是否正常
程中出现	电机绝缘性能下降	测量电机动力线对 PE 电阻,确认绝缘电阻是 否在 2MΩ以上
	UVW 与 PE 短路	动力线缆短路后会造成母线电压升高,但本机可能不会报警 16,同电源的其他驱动会报警 16

17 号报警:外部制电阻阻值错误

运行状态	原因	处理方法
	外部制动电阻阻值小于最小允许值	核对外部制动电阻阻值,正确设置参数 PA69 (外部制动电阻阻值)

21 号报警: 总线通信错误

运行状态	原因	处理方法
接通控制电源时出现	网络接口接触不良	检查网口是否紧固连接 检查网线屏蔽是否正确连接 检查驱动器屏蔽地是否接好
	0P 状态总线连续错帧超过 3 次	检查网线屏蔽是否正确连接

22 号报警: 总线连接中断

运行状态	态	原因	处理方法
接通控制	电 网络接口接触	虫不良或断开	检查网口是否紧固连接
源时出现			检查网线屏蔽是否正确连接

25 号报警: 急停输入报警

运行状态	原因	处理方法
接通控制电源时出现	急停 I0 输入有效	检测急停 IO 输入信号是否正常

26 号报警: IO 输入端子功能配置异常

运行状态	原因	处理方法
接通控制电源时出现	不同 IO 输入端子配置成同一功能	检查 Fn0~Fn1 参数,查看是否有 2 个或以上 参数相同

6.2 单轴报警

轴报警是指单轴的报警,报警号数值遵循(报警号=轴号 x 100+报警代码),例如 报警显示 124,表示轴 1 报警 24。

表 7-2 单轴报警一览表

	轴报警一览表(报警号=轴号 x100+报警代码)			
报警代码	报警名称	内容	可复位	可急停
1	超速	伺服电机速度超过设定值(PA23)	√	
3	电机振动	电机振动	√	
4	位置超差	位置偏差计数器的数值超过设定值 (PA17)	√	
5	平均电流过载	电机平均负载率过高	√	
6	速度放大器饱和故障	速度调节器长时间饱和	√	
8★	IPM 过温报警	IPM 温度超过设定值		
10★	电机参数错误	电机参数超出允许范围		
11★	IPM 模块故障	IPM 智能模块故障		
12	过电流	电机电流过大	√	
13	过负载	伺服驱动器及电机过负载 (瞬时过热)	√	
14	再生制动故障	再生制动电路故障	√	
15	编码器计数错误	编码器反馈差值过大	√	
18	绝对式编码器报警	轴编码器通信故障	√	
19★	绝对式编码器电池故障	电池电压低于 2.5V, 多圈位置信息已丢		√
20★	EEPROM 错误	EEPROM 错误		
21★	A 相电流采样错误	A 相电流采样错误		
22★	参数超出规定范围	有伺服参数超出了规定范围		
23★	B相电流采样错误	B相电流采样错误		
24★	绝对值编码器参数读写错 误	绝对值编码器 EEPROM 参数错误		
27★	绝对式编码器电池报警	电池电压低于 3.1V, 电池电压偏低		√
28	绝对式编码器通信超时报 警	绝对式编码器超时返回	1	
29	用户转矩过载	电机负载超过用户设定的数值和持续 时间	√	

30★	松下编码器状态 SF 异常	PA97.0 为1屏蔽报警		
31	32 位绝对位置溢出报警	编码器多圈超出 32 位指令	√	√
33★	自定义电机本体参数错误	自定义电机本体参数错误		
35★	电机适配错误	非适配电机(电机电流超出适配范围)		
37★	电机零位锁定失败	零位锁定出错		
43	总线运行模式错误	切换 OP 状态前未写控制模式	√	
44	总线状态切换错误	总线状态非正常切换	√	
51	多圈位置超出设定值	多圈位置超出设定值	√	
62	飞车报警	指令速度和实际速度差值过大	√	

6.2.1 常见报警处理方法

1号报警:超速

运行状态	原因	处理方法
接通控制电	控制电路板故障	更换伺服驱动器
源时出现	编码器故障	更换伺服电机
	参数 PA23 设置过小	增大参数 PA23 的设定值
	输入指令脉冲频率过高	正确设定输入指令脉冲
	加/减速数据常数太小, 使速度超调量过大	增大加/减速时间常数
	输入电子齿轮比太大	正确设置
 电机运行过	编码器故障	更换伺服电机
程中出现	编码器电缆不良	换编码器电缆
12 1 11/20		重新设定有关增益
	伺服系统不稳定	如果增益不能设置到合适值,则减小负载转
		动惯量比率
	 负载惯量过大	减小负载惯量
	7,40,52.27	换更大功率的驱动器和电机
		检查 PA1、PA45 和 dJ 菜单下的 00UEd 及
	电机参数设置错误	05PoP。如手拧电机监控 r0 速度反馈看是否
		正常,如 23 位编码器设置的是 17 位,那么
电机适配时出现		会报警 1、15 警报,如 17 位编码器设置 23
		位那么 r0 转速显示的数字很小
	 编码器零点错误	校正编码器零点,或者读取编码器零点偏置
	NAME AND STREET SA	值,将此值填入 dJ 的 12/13 参数中
	电机 UVW 引线接错	正确接线

3号报警:振动检出

运行状态	原因	处理方法
电机使能时出现	增益参数不合理,刚性太强或太弱	多数情况是增益太强导致,且会出现电机啸叫声,大驱动适配小电机时通常出现此报警。此时降低伺服环路增益,适当降低 PA9、PA5,增大 PA6 参数。 若增益太弱,检查负载是不是太大,或者电机功率是否够
	电机型号设置错误	检查 PA1 参数,确认电机型号;若为自定义 电机类型,检查 DJ 菜单电机参数
	驱动器型号设置错误	检查 PA2 参数,确认驱动器型号

4号报警:位置超差

运行状态	原因	处理方法
接通控制电源时出现	电路板故障	将驱动上除进线电源外,其余全部拆除,上电后驱动还是有报警4,说明驱动硬件故障, 更换驱动
接通主电源 及控制线,输	电机 U、V、W 引线接错 编码器电缆引线接错	正确接线
入指令脉冲,	编码器零点变动	重新调整编码器零点
电机不转动	编码器故障	更换伺服电机
或反转	编码器或动力线缆混接	多个驱动场合会出现此现象,检查接线
	设定位置超差检测范围太小	增加 PA17 位置超差检测范围
		或将 PA17 改为 0 关闭位置超差检测
	位置比例增益太小	增加增益
	转矩不足	检查转矩限制值,减小负载容量 更换更大功率的驱动器和电机
电 机 运 行 过 程中出现	每转脉冲数设置不对	正确设置每转脉冲数,驱动与系统的每转脉 冲数必须保持一致
	编码器零点错误	校正编码器零点,或者读取编码器零点偏置值,将此值填入dJ的 12/13 参数中
	多圈溢出	将电池在断电情况下拔掉,上电重新设置零点
	电机动力线 UVW 断开	检查 uvw 是否断开
	机械卡死	检查机械是否卡死或者机械撞机到硬线位

5号报警: 电机平均负载电流报警

运行状态	原因	处理方法
	电机参数设置错误	检查 PA1、PA45 和 dJ 菜单下的 00UEd 及 05PoP
电机适配时	电机动力线 UVW 相序错误	检查动力线接线
出现	电机型号设置错误	检查 PA1 参数,确认电机型号;若为自定义 电机类型,检查 DJ 菜单电机参数

电机运行过 程中出现	电机负载过重	在电机静止使能的情况下查看 dp8,确认电机电流是否超过或接近额定电流
	电流超过 80%	监控 dP 菜单下的 29oL 或者 Stp 软件监控指令电流,反馈电流看是否超过 80%确认能正常使用时可将 PA97改 xxxx1 屏蔽此报警
	电机抱闸未打开	确认电机抱闸是否打开

6号报警:速度放大器饱和故障

运行状态	原因	处理方法
	电机参数设置错误	检查PA1、PA45和dJ菜单下的00UEd及05PoP
电机适配时	驱动器型号代码错误	检查 PA2 参数
出现	电机 U、V、W 相序接错	检查电机相序
	编码器零点错误	校正编码器零点,或者读取编码器零点偏置
	细钙奋令总钼庆	值,将此值填入 dJ 的 12/13 参数中
	母线电压过低	查看母线电压是否大于 290V
	电机抱闸未打开	确认电机抱闸是否打开
	电机被机械卡死	检查负载机械部分
电机运行过	电机动力线 UVW 断开	更换动力线缆
程中出现	负载过大	减小负载
		更换更大功率的驱动器和电机
	使用转矩模式	通过修改 6072 将最大转矩加大,或者 PA62
		改为100,屏蔽此报警

8号报警: IPM 过温报警

运行状态	原因	处理方法
接通控制电	IPM 过热,超出设定温度	降低负载 加强驱动器散热
源时出现	伺服驱动器损坏	可将 pa62 改 10000 屏蔽此报警, 若此时能正常运行则可能是是误报警导致, 否则更换驱动

10 号报警: 电机参数错误

运行状态	原因	处理方法
接通控制电	电机参数设定超出范围	检查电机参数(DJ 菜单)
源时出现	绝对式编码器 EEPROM 损坏或未写参数	关闭绝对式电机参数自动识别(PA18 的 bit2
49X+1 III 29C	纪约以辅问葡 EEI NOM 坝外以不可多数	设为0),手动设置电机参数

11 号报警: IPM 故障

运行状态	原因	处理方法
	驱动器 UVW 之间短路或接触不良	检查接线,测量 UVW 间电阻是否平衡
		测量驱动器 UVW 端与接地线 PE 之间的绝缘电
	电机绝缘损坏	阻是否为兆欧(MΩ)级数值,绝缘不良时更
		换电机
	增益设置不合理,电机振荡	进行增益调整
电机运行过	控制输入指令设定异常	检查控制输入指令是否变动过于剧烈,修正
程中出现	江阿伽八田《及足开市	输入命令变动率或调整滤波参数
	接地不良	检查接地线 PE 是否正确连接
	机械卡死	检查机械是否卡死
	编码器零点错误	校正编码器零点,或者读取编码器零点偏置
		值,将此值填入 dJ 的 12/13 参数中
接通控制电源时出现	驱动器损坏	将驱动上除进线电源外,其余全部拆除,上
		电后驱动还是有报警11,说明驱动硬件故障,
V3 4 22,70		更换驱动
电机使能时	驱动器 UVW 之间短路或接触不良	检查接线,测量 UVW 间电阻是否平衡
出现	电机刹车没打开	检查电机刹车是否打开

12 号报警: 过电流

运行状态	原因	处理方法
	驱动器 UVW 之间短路或接触不良	检查接线,测量 UVW 间电阻是否平衡
电机运行过	电机绝缘损坏	测量驱动器 UVW 端与接地线 PE 之间的绝缘电阻是否为兆欧(MΩ)级数值,绝缘不良时更换电机
程中出现	增益设置不合理,电机振荡	进行增益调整
	控制输入指令设定异常	检查控制输入指令是否变动过于剧烈,修正 输入命令变动率或调整滤波参数
	接地不良	检查接地线 PE 是否正确连接
	机械卡死	检查机械是否卡死
	电机刹车没打开	检查电机刹车是否打开
电机使能时出现	驱动器 UVW 之间短路或接触不良	检查接线,测量 UVW 间电阻是否平衡
	驱动器损坏	将驱动上除进线电源外,其余全部拆除,上 电后驱动还是有报警 12,说明驱动硬件故障, 更换驱动

13 号报警: 过负载

运行状态	原因	处理方法
接通控制电源时出现	电路板故障	将驱动上除进线电源外,其余全部拆除,上 电后驱动还是有报警13,说明驱动硬件故障, 更换驱动
电机运行过程中出现	超过额定转矩运行	检查负载 降低起停频率 减小转矩限制值 更换更大功率的驱动器和电机
	保持制动器没有打开	检查保持制动器
电机使能时出现	电机不稳定振荡	调整增益,减小负载惯量 增加加/减速时间
	UVW 有一相断线	检查接线
	机械卡死	检查机械是否卡死

14 号报警:制动故障

运行状态	原因	处理方法
接通控制电源时出现	电路板故障	将驱动上除进线电源外,其余全部拆除,上电后驱动还是有报警14,说明驱动硬件故障, 更换驱动
	制动电阻接线断开	检查制动电阻是否正确连接
	电机绝缘性能下降	测量电机动力线对 PE 电阻,确认绝缘电阻是 否在 2MΩ以上
电机运行过 程中出现	制动电阻参数设置不正确	检查 PA51 (制动电阻选择)、PA69 (外部制动电阻阻值)和 PA70 (外部制动电阻功率) 参数是否与实际使用的外部电阻参数一致
	制动回路容量不够	更换阻值更小、功率更大的制动电阻 降低起停频率 增加加/减速时间常数 减小负载惯量 更换更大功率的驱动器和电机
	主电路电源过高	检查主电源偏差是否超过+/-10%,查看母线 电压是否大于 330V

15 号报警:编码器计数错误

运行状态	原因	处理方法
电机运行过	编码器损坏 编码器线数不对 编码器盘片损伤 编码器存在虚假 Z 信号(一圈中有多 个 Z 脉冲)	更换编码器
日 程中出现	编码器焊线错误	检查焊线,检查是否有错焊,或者屏蔽层未 焊接
	编码器线接触不良	更换编码器线
	接地不良	检查屏蔽地线是否接好
电机适配时 出现	电机参数设置错误	检查 PA1、PA45 和 dJ 菜单下的 00UEd 及 05PoP。如手拧电机监控 r0 速度反馈看是否正常,如 23 位编码器设置的是 17 位,那么会报警 1、15 警报,如 17 位编码器设置 23 位那么 r0 转速显示的数字很小
	编码器零点错误	校正编码器零点,或者读取编码器零点偏置值,将此值填入dJ的12/13参数中
	电机 UVW 引线接错	正确接线

18 号报警: 绝对式编码器报警

7 777 77			
运行状态	原因	处理方法	
	编码器类型设置错误	核对编码器类型,检查 PA61 参数。此报警 适配松下编码器协议时经常出现	
	编码器线连接不良	正确连接编码器线	
电机适配时	编码器焊线错误	检查焊线,检查是否有错焊,或者屏蔽层未 焊接	
出现	编码器通信受到电磁干扰	将 PA38 设为 8, 查看 dP 菜单下 35. r 5 u 显 示数值是否为 0, 若不为 0 则代表编码器通信受到干扰,此时需检查编码器线缆屏蔽是否可靠连接, 电机 PE 线是否可靠连接	
	编码器故障	更换伺服电机	
接通控制电源时出现	电路板故障	更换伺服驱动器	
	电缆过长,造成编码器供电电压偏低	采用多芯并联供电。编码器线缆超过 10 米 的需要此操作	

19 号报警: 绝对式编码器电池故障

运行状态	原因	处理方法
电机适配时	电池连接不良、未连	检查电池是否正确连接电池,执行绝对式编码器复位操作(PA80设为00001,不保存,重新上电) 报警清除后,需重新设置机械原点
出现	多圈绝对值电机初次上电	由于编码器与电池脱离,导致编码器位置丢失,需要执行绝对式编码器复位操作 (PA80 设为 00001,不保存,重新上电)
电机运行过	编码器通信受到电磁干扰	将 PA38 设为 8, 查看 dP 菜单下 35 r 5 u 显 示数值是否为 0, 若不为 0 则代表编码器通信 受到干扰,此时需检查编码器线缆屏蔽是否可靠连接, 电机 PE 线是否可靠连接
程中出现	电池电压低于规定值(2.5V)	更换电池,重新上电 执行绝对式编码器复位操作 (PA80 设为 00001,不保存,重新上电) 报警清除后,需重新设置机械原点

20 号报警: 轴 Flash 参数读取错误

	运行状态	原因	处理方法
Ī		Flash 读 CRC 错误	执行恢复缺省值操作,重新上电

21 号报警: A 相电流采样错误

运行状态	原因	处理方法
接通控制电源时出现	芯片或电路板损坏	将驱动上除进线电源外,其余全部拆除,上电后驱动还是有报警21,说明驱动硬件故障, 更换驱动
	UVW 与 PE 短路或错接	检查动力线缆

22 号报警:参数超出范围

运行状态	原因	处理方法
接通控制电源时出现	有参数设定值超出了规定范围	查看 dP 菜单下 2. LE EP 找到超出范围的参数号,修改相应的参数值到范围内,并保存到 EEPROM,重新上电如果有多个参数超出范围,需要重复以上动作 显示 xx 时,表示 PA 参数,如 70,表示 PA 70 显示 1xx 时,表示 Fn 6数,如 170,表示 Fn 70

23 号报警: B 相电流采样错误

运行状态	原因	处理方法
接通控制电源时出现	芯片或电路板损坏	将驱动上除进线电源外,其余全部拆除,上 电后驱动还是有报警 23,说明驱动硬件故障, 更换驱动
	UVW 与 PE 短路或错接	检查动力线缆

24 号报警: 绝对式编码器参数读写错误

运行状态	原因	处理方法
	电机 EEPROM 中未写入电机参数	确认电机是否为华大绝对式电机 关闭绝对式电机参数自动识别(PA18 的 bit2 设为 0),手动设置电机参数
电机适配时出现	编码器类型设置错误	核对编码器类型,检查 PA61 参数。PA61 为 0时,对应报警 31、9A; PA61 为 1时,对应报警 32、9A; PA61 为 2时,对应报警 24、28。按照实际情况正确设置编码器类型
	编码器口选择错误	TSVB 总线系列有两个编码器接口 PA61 改为xxx0x,选用 X2 编码器口,改为 xxx1x 选用X4 编码器口
	编码器焊线错误	检查焊线,检查是否有错焊,或者屏蔽层未 焊接
	编码器损坏	更换编码器
 电机运行过	编码器线缆断开	更换编码器线缆
程中出现	编码器线接触不良	更换编码器线
71 11/20	接地不良	检查屏蔽地线是否接好

27 号报警: 绝对式编码器电池报警

运行状态	原因	处理方法
电机适配时 出现	电池连接不良、未连	检查电池是否正确连接电池,执行绝对式编码器复位操作(PA80设为00001,不保存,重新上电) 电机不需要电池时将PA18改为xxxx0
	电池线缆焊反	检查电池正负线缆是否反接
	电池电压低于规定值(3.1V)	在驱动器上电情况下更换电池
接通控制电源时出现	电池线缆断开	更换编码器线缆
	电池线缆焊错	电池线缆不经过驱动,检查是否焊接在编码 器接口中,这样会导致电池耗电快从而报警

28 号报警: 绝对式编码器通信超时报警

运行状态	原因	处理方法
	电机 EEPROM 中未写入电机参数	确认电机是否为华大绝对式电机 关闭绝对式电机参数自动识别(PA18 的 bit2 设为 0),手动设置电机参数
电机适配时出现	编码器类型设置错误	核对编码器类型,检查 PA61 参数。PA61 为 0时,对应报警 31、9A; PA61 为 1时,对应报警 32、9A; PA61 为 2时,对应报警 24、28。按照实际情况正确设置编码器类型
	编码器口选择错误	TSVB 总线系列有两个编码器接口 PA61 改为xxx0x,选用 X2 编码器口,改为xxx1x选用X4 编码器口
	编码器焊线错误	检查焊线,检查是否有错焊,或者屏蔽层未 焊接
	编码器损坏	更换编码器
 电机运行过	编码器线缆断开	更换编码器线缆
程中出现	编码器线接触不良	更换编码器线
12, 24,70	接地不良	检查屏蔽地线是否接好

29 号报警: 转矩过载

运行状态	原因	处理方法
由机运运过	PA30、PA31 参数不合理	修改参数
电机运行过 程中出现	意外大负载发生	检查机械
任于山坑	电机抱闸故障	确认电机抱闸是否正常打开
电机适配时出现	编码器线数设置错误	将编码器线数设置小了,正确设置编码器线 数

30 号报警: 松下编码器状态 SF 异常

运行状态	原因	处理方法
接通控制电源时出现	驱动读取松下编码器状态 SF 异常	检查电机编码器, PA97 改为 00001 屏蔽报警

31 号报警: 编码器多圈超出 32 位指令

运行状态	原因	处理方法
电机运行过 程中出现	驱动指令为 32 位,当系统指令和多圈数值总和超过此值时,驱动报警,此报警只有当 PAI4 为 3 时有效	PA80 改为 xxxlx,清除多圈值,或者使用无线旋转功能

35 号报警: 电机适配错误

运行状态	原因	处理方法
	电机型号或参数设置错误	查看 PA1 参数,确认电机型号,一般都是小
执行恢复参	电机至 5 以多数 以直相 庆	功率驱动器带大功率电机出现报警
数缺省值后	驱动器型号错误	查看 PA2 参数,确认驱动器型号
	驱动器与伺服电机不适配	联系厂家或更换匹配的驱动器或者电机

43 号报警:运行模式异常

运行状态	原因	处理方法
接通控制电源时出现	主站未正确设置伺服运行模式	确认主站在使能伺服运行前是否正确设置伺 服运行模式

44 号报警: 总线状态机切换异常

运行状态	原因	处理方法
接通控制电	总线主站非法操作,在伺服使能运行状	确认主站操作顺序
源时出现	态将总线状态机切换至非 0P 态	

51 号报警: 多圈数据超出设定值

运行状态	原因	处理方法
使用无线旋	上电时,多圈数据已大于设定最大旋转	PA80 改为 xxx1x,清除多圈值,或者使用无
转功能时	圈数,则驱动器会出现报	线旋转功能

62 号报警: 飞车

运行状态	原因	处理方法		
电机适配时 出现	UVW 相序接错	检查 UVW 相序		
		检查 PA1、PA45 和 dJ 菜单下的 00UEd 及		
	电机参数设置错误	05PoP。如手拧电机监控 r0 速度反馈看是否		
		正常,如 23 位编码器设置的是 17 位,那么		
		会报警 1、15 警报,如 17 位编码器设置 23		
		位那么 r0 转速显示的数字很小		
	编码器零点错误	校正编码器零点,或者读取编码器零点偏置		
	細門都令点错误	值,将此值填入 dJ 的 12/13 参数中		
	编码器或动力线缆混接	多个驱动场合会出现此现象,检查接线		
电 机 运 行 过 程中出现	指令速度和实际速度差值过大	提高伺服刚性或者降低加速度		

〇 说明

▶ "★"表示不可软件复位。

7 电机适配表

表 7-1 TSVM-D4 系列伺服驱动器适配 HD 电机表

型号	适配 HD 电机	功率	额定转矩	额定转速	额定电流
代码		(kw)	(N • m)	(r/min)	(A)
Hd-24	60ST-M0033060L□DD	0.1	0.32	3000	0.9
Hd-25	60ST-M0063060L□DD	0.2	0.64	3000	1.6
Hd-26	60ST-M0123060L□DD	0.4	1. 27	3000	2.9
Hd-27	60ST-M0173060L□DD	0. 55	1. 75	3000	3.9
Hd-28	80ST-M0133050L□DD	0.4	1. 3	3000	2. 2
Hd-29	80ST-M0243050L□DD	0.75	2. 4	3000	4.8
Hd-30	80ST-M0333050L□DD	1.0	3. 3	3000	6. 1
Hd-31	80ST-M0403050L□DD	1.3	4. 0	3000	7.8
Hd-32	110ST-M0422030L□DD	0.88	4. 2	2000	4. 5
Hd-33	110ST-M0423040L□DD	1.3	4. 2	3000	6. 5
Hd-34	110ST-M0542030L□DD	1. 1	5. 4	2000	5. 5
Hd-35	110ST-M0543040L□DD	1.7	5. 4	3000	8.2
Hd-36	110ST-M0642030L□DD	1.3	6. 4	2000	6. 5
Hd-37	110ST-M0642540L□DD	1.7	6. 4	2500	9. 5
Hd-38	110ST-M0752030L□DD	1.6	7. 5	2000	8.0
Hd-39	130ST-M0421530L□DD	0.65	4. 2	1500	5. 5
Hd-40	130ST-M0423040L□DD	1.3	4. 2	3000	7.0
Hd-41	130ST-M0541530L□DD	0.85	5. 4	1500	6. 5

山 说明

- ▶ 适配不同编码器时,通过设置参数 PA61(编码器类型)和 PA45(绝对式编码器位数) 匹配;
- ▶ 适配 hd 绝对式电机时,设置参数 PA1(电机类型)为用户自定义,打开编码器自动识别功能(PA18=xx1xx)即可完成电机适配。

表 7-2 TSVM 系列伺服驱动器适配 DMC 电机表

型号		功率	额定转矩	额定转速	额定电流
代码	适配 DMC 电机	(kw)	(N • m)	(r/min)	(A)
TA-1	TS4603N□E200	0.1	0.3	3000	1. 1
TA-2	TSM3003N□E200	0.1	0.3	3000	1.1
TA-3	TS4607N□E200	0.2	0.6	3000	1.8
TA-4	TSM3005N□E200	0.2	0.6	3000	1.8
TA-5	TS4609N□E200	0.4	1.3	3000	2.9
TA-6	TSM3006N□E200	0.4	1.3	3000	2.9
TA-7	TS4614N□E200	0.75	2. 4	3000	5. 1
TA-8	TSM3010N□E200	0.75	2. 4	3000	5. 1
TA-9	TSM1004N□E726	1.0	3. 2	3000	6.0
TA-10	TSM1304N□E726	1.0	4.8	2000	6.0
TA-11	TSM1306N□E726	1.0	6. 4	1500	5.8
TA-18	TSM3002N□E200	0.05	0.2	3000	0.9
Hd-62	TS4602NxxxxE200	0.05	0.2	3000	0.6
Hd-63	TS4603NxxxxE200	0.1	0. 3	3000	1.1
Hd-64	TS4607NxxxxE200	0.2	0. 9	3000	1.8
Hd-65	TS4609NxxxxE200	0.4	2. 4	3000	3. 4
Hd-66	TS4614NxxxxE200	0.75	3. 2	3000	5. 1
Hd-69	TSM1306NxxxxE716	1.0	4. 0	1500	5.8
Hd-74	TSM3003N7057E200	0.1	0.3	3000	1.2
Hd-75	TSM3005N2057E200	0.2	0.6	3000	1.9
Hd-76	TSM3204N7023E700	0.4	1.3	3000	3. 7
Hd-77	TSM3010N2057E200	0.75	2. 4	3000	5. 7

说明

▶ 适配不同编码器时,通过设置参数 PA61(编码器类型)和 PA45(绝对式编码器位数) 匹配。